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ABSTRACT Numerical iterations have shown that peri-
odic haplold two-locus sltn with nonoverlapping genera-
dons can produce lrge- c behavior with a period
differIng s from the environmental period. Among
other types, we observed slowly d a with very
long periods, stable T-cycles with a length c InIng several
environmental periods, and chaotic-like dynamics. Possble
bogi mpao are d d.

Earlier work has shown (1-3) that, in population genetic
models with both continuous and discrete times, stationary
diploid selection can produce stable oscillations of allele
frequencies. Periodic changes in selection coefficients
caused by variation of external conditions are considered
among other factors maintaining polymorphism in natural
populations (4-6). In these systems, one can consider poly-
morphic fixed points across periods for any of the environ-
mental states under consideration. Rather unexpectedly, we
found that these points can show long-term periodic changes
along a trajectory with a period much longer than that of the
environmental fluctuations generating them.

DESCRIPTION OF THE MODEL
We consider a standard model ofa diploid dialelic two-locus
infinite population with panmixia and nonoverlapping gener-
ations subject to haploid selection. The selection coefficients
are functions of environmental states that change periodi-
cally. The evolutionary operator for two consecutive gener-
ations can be written as

XI = w11(x1 - rD)/W.

X2= wn2(x2 + rD)/W.

X3= W,3(X3 + rD)/W.

X4= w.(x4 - rD)/W. [1]

In each equation, xj = 1,.. . , 4) values are the frequencies
of the haplotypes AB, Ab, aB, and ab, respectively; wU is the
fitness of the haplotypej in the environmental state i; r is the
rate of recombination between the two loci; D = X1X4 - X2X3
is the linkage disequilibrium coefficient; W = wlxl + w,2x2 +
w,3x3 + wi4x4 - (wi - w2 - w,3 + w,4)rD.
We will consider a class of periodic environments that can

be represented mathematically as (Slei, Ne2, S2e3, Ne4). Sle,
is a sequence of length ei of states with the same selection
regime SI, and S2e3 is an analogous sequence oflength e3 with
selection regime S2. In general, regimes S1 and S2 could be
different. Ne2 and Ne4 designate sequences of selectively

neutral states of lengths e2 and e4. LetE = el + e2 + e3 + e4
be the environmental period length.
As a limiting case for environments of this type, one can

consider situations with el = e3 = 1 and e2 = e4 = o. Such
a model approximates the evolutionary situation discussed
by Gillespie (7). He argues that molecular evolution is
episodic, with short bursts of rapid evolution interspersed
between long periods of very slow change.
For this limiting case, the evolutionary operator for the

whole "period" can be represented in the following form:

PA = PA(W11PB + W12(1 - PB))W1.

Pi = PB(W11PA + W13(1 - PA))/W1I

W1 = W11PAPB + W12PA(l - PB) + w3(1 - PA)PB
+ w14(1- PA)(1 - PB).

PA = PA(W21PB + W22(1 - PB))/W2.

Pi = PB(W21PA + W23(1 - PA))/W2.

W2 = W21PAPB + W22PA(l - PB) + W23(1 - PA)PB
+ w24(1-PA)( -PB).

[21]

[2&i]

Here PA and PB are the frequencies of alleles A and B. The
limiting equations were obtained from Eq. 1, taking into
account the fact that for the portion of the period without
selection, the allele frequencies do not change, leading in the
limit to linkage equilibrium (8-10).

NUMERICAL RESULTS
Model 1. For an environment with period E, we define

fitness coefficients of the model described by Eq. 1 as
follows.

For S1, we = 1, w12 = 0.5, W,3 = 0.6, and w14 = 0.22

(i= 1, . . el).

For S2, w.] = 0.1, w,2 = 0.2, w,3 = 0.165, and wi4 = 0.425

(i=el+e2+1,. . . el+e2+e3)

For the remaining cases, wU = 1. [31

Note that the fitness coefficients have been chosen so that
the product of the fitnesses of a genotype in the two regimes
is roughly constant for all genotypes. Therefore, the net
change of haplotype frequencies in period E is very small,
although the difference at the end of Si and S2 may be large.

Step i. Let el = e3 = 1, e2 = e4 = 2, and r = 0.5. Starting
from the initial point xi = 0.5316, x2 = 0.1107, X3 = 0.2851,
and X4 = 0.0726, we obtain the spiral trajectory shown in Fig.
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FiG. 1. Fragment of system 1 (el = e3 = 1 and e2 = e4 = 2)
trajectory in the space (PA, P,). The fitnesses are given in the text.
The system starts atPA = xi + x2 = 0.6423 and PB = xl + X3 = 0.8167
and spirals inward.

1. The length of the first cycle is approximately 500E (i.e.,
3000 generations). Therefore, environmental fluctuations
with a relatively short period (E = 6) can produce much larger
gradually damping oscillations of allele frequencies.
The same type of behavior could be observed for other

values of r-e.g., r E (0.35, 0.5). To estimate the dependence
of the period length (L) on r, we used the approximation L =
2ir/arccos[Re(A)/IAIJ, where A is the complex dominant
eigenvalue of the Jacobian matrix at the corresponding poly-
morphic fixed point. We found that for the set of parameters
3, L(r) increases from 477 to 643 when r decreases from 0.5
to 0.35. For r < 0.35, the system converges monotonically to
a polymorphic fixed point.
One could ask how robust the long-term damping oscilla-

tions caused by short-term cyclical selection are with respect
to changed selection coefficients. A simple way to investigate
the robustness of the effect is to calculate the range of values
of each selection coefficient way and wz (i = 1, * , 4)
compatible with the cyclic behavior, provided all other
selection coefficients are as specified by set 3. The following
ranges were obtained for r = 0.5 and the initial point xl =
0.278682, x2 = 0.073231, X3 = 0.505663, and X4 = 0.142424.

w11 = 1.0 a (w11 - 0.008, w1l + 0.015).

w12 = 0.5 a (w12 - Q.010, w12 + 0.010).

w13 = 0.6 a (w13 - 0.005, w13 + 0.005).

wI4 = 0.22 a (w14 - 0.010, w14 + 0.010).

w21 = 0.1 (w21 - 0.000, w21 + 0.001).

w22 = 0.2 a (w22 - 0.005, wn + 0.003).

W23 = 0.165 > (w23 - 0.001, w23 + 0.001).

w2A = 0.425 > (w24 - 0.012, w2 + 0.020).

w1l E (1.0 - 0.40, 1.0 + 0.05); w21 = 0.1/w11.

w12 E (0.5 - 0.04, 0.5 + 0.20); w22 = 0.1/wu2.

W13 E (0.6 - 0.03, + 00); w23 = 0.099/w13.

W14 E (0.22 - 0.15, 0.22 + 0.01); w24 = 0.0935/w14.

Therefore, we can imagine that in the eight-dimensional
space of fitness coefficients, the set of points representing
systems with cyclical behavior includes a four-dimensional
surface surrounded by an eight-dimensional domain. It would
be of interest to check whether or not these oscillatory
dynamics will indeed be maintained if selection coefficients
are changed randomly within the calculated eight-dimen-
sional cube 4. Fig. 2 illustrates the stability ofthe oscillatory-
like behavior of the system.

Step ii. A next step is to check whether these long-term
damping oscillations occur with other lengths and structures
of the environmental period. We found the same general
pattern when all the components ofthe environmental period
were increased. For instance, let el = e3 = 2 and e2 = e4 =
8. Starting with the point (xi = 0.0162, x2 = 0.0294, X3 =
0.8096, X4 = 0.1448), we obtained the pattern shown in Fig.
3. To estimate the dependence of the period length on the
recombination rate, L(r) was calculated as described above.
For the same selection regime and starting point, L(r) in-
creases from 173 to 182 when r decreases from 0.5 to 0.3 and
then decreases to 172 when r decreases to 0.08. For r < 0.08,
the system is not polymorphic.

Similarly, dozens oflong-term periods were found fore1 =
e3 = 7 and e2 = e4 = 10starting from the same point. We stress
that this effect is characteristic not only of isolated fitness
vectors but also of some eight-dimensional domain.

Step iii. So far we have considered alternating selected and
neutral states. The only role of the latter is to allow recom-
bination. To determine the impact of this factor on long-term
oscillatory behavior, we considered the limiting system 2,
which amounts to complete randomization during the neutral
regime.
The damping of oscillations in such a system is extremely

slow and the oscillatory period approaches one to two
thousand generations. For example, with fitness coefficients
for SI of we = 1, w,2 = 0.5, w,3 = 0.6, and w14 = 0.22 (i = 1,
... ., el) and for S2 of wel = 0.1, w2 = 0.155, w,3 = 0.16371,
and w,4= 0.44636 (i = el + e2 + 1, ..., el + e2 + e3) and
starting from PA = 0.0025 and PB = 0.94, we obtain the
trajectory of Fig. 4A. The allele frequencies at the fixed point
are approximately PA = 0.001686 and PB = 0.940330 (or
0.002831 and 0.977239 for the other component ofthe cycle).
The eigenvalue of the Jacobian at this point can be charac-
terized by module 0.999993 and L 3986. This explains the
behavior of the trajectory.

Fig. 4B shows a similar trajectory. In this case, for Si, we
= 1, w = 0.5,w3 = 0.6, andw4= 0.22 (i = 1, . ,el) and,

[4]

It should be emphasized that polymorphism does not
necessarily disappear outside these ranges; it could be main-
tained, although without damping oscillations. It is also worth
mentioning that the range of selection coefficients producing
oscillatory behavior may be increased further if the coeffi-
cients are changed in a concordant manner. Specifically, let
us change the coefficients w1i and W2, such that their product
remains constant. Then, for r = 0.5 and the initial point ofthe
paragraph above, the following pairs ofconjugated ranges are
compatible with an oscillatory regime, provided the other
coefficients remain unchanged.

0.2

0.3

Generations, no.
12,0000 24,000

¶ i. . 5'..

j.,. . :.::? .. .,
3 a.e

Fio. 2. Variations in PA in system 1 resulting from stochastic
fluctuations of the selection coefficients from period to period
(evenly distributed within the eight-dimensional cube 4). The graph
shows the dynamics of the system for generations 138,000-162,000.
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FIG. 3. Trajectory of system 1 (ei = e3 = 2 and e2 = e4 = 8) in

the space (PA, PB). The fitnesses are given in the text. The system

starts at PA = 0.0456 and PB = 0.8258.

for S2, wil = 0.1, wa = 0.155, w,3 = 0.16378, andwi4 = 0.44629
(i=el + e2 + 1, .., el + e2 + e3) and starting point PA
0.0025 and PB = 0.94. The allele frequencies at the fixed point
are approximately PA = 0.00535 and PB = 0.94173 (or
0.008969 and 0.977742 for the other component of the cycle).

Several remarks should be made about the trajectories of
the system in the vicinity of the polymorphic fixed point. It
is easy to check that at any point (PA, PB) the Jacobians of
transformations 2i and 21 may be represented in the following
form:

[WjfPB + Wj2(1- PB) - PAdWjA]/Wj
[PB(wfl -Wj) PhdWjA]/IW?

where j = 1, 2 and dWjA and dWjB are the derivatives of Wj
with respect to PA and PB,

dWjA = WJPB + wJ2(1- PB) -WJ3PB- wj4(l - PB),

dWjB = Wj1PA + Wj2PA + Wj3(1- PA) -Wj4(1 - PA),

and (PA, P6) is the image ofthe state (PA, PB). If the two parts
of the transformation 2 are equal, which means that only one
selection regime characterizes the system, then for the fixed
point one will obtain PA = PA and PB = PB. In this special
case, only one stable point can exist, and if so, it has the form
PA = (W2 - W4)/(Wl - W2 -W3 + W4) and PB = (W3 - w4)/(wl
- W2 - W3 + W4). At this point the Jacobian is equal (for both
j = 1 and 2) to

0.946

0.944-

C~0.942-

0.94-

A

6 8
PA

1

-(l- W2)(W3 W)O

examples of oscillatory convergence to the polymorphic fixed
point this condition holds. The condition for existence of
complex eigenvalues of J12 is the inequality Sp(Jh2)2 - 4
det(J1)det(J2) < 0. After some transformation we have

( 2lcrz)2/(WlW9 I1r(PA)1r(Pi) - jr(PA)1r(PB)]

+ 4olo2[X(PA)1r(Ph) ir(PA)lr(PB)]/(WW2i)2

+ 4ir2(PA)2(Ph) 2/[1r(PA)ir(PB)W24]

+ 4ir2(PA)7r2(PB)o2/[1r(PA)1r(P)Wj4] <0.

It can be seen that the inequality tends to be true when, for
instance, oi and o2 are small (because oo-2 is negative).

6
PA

-(Wl - W3)(W2 - W4)/O'
1 1

where = w1w4 - w2w3. This will be referred to as the
epistatic parameter (we assume that # 0). In this case the
fixed point is unstable or neutral, because Sp(J) = 2. In fact
the eigenvalues are 1 ± [(w1 - W3)(w2 - W4)(WI - W2)(W3 -

W4)]1/2/c, so that the fixed point is real and repelling.
Consider an environment with Eq. 21 # Eq. 21. Let the

point (PA, PB) be transformed into (PA, PB) by operator 2i and
then into (PI, PB) by operator 2il. It is clear that at the fixed
point, Pi = PA and PB = PB. The Jacobians of these two
transformations can be written in the form

IPA(1 PA)/[PA(1 PA)]
A1= PB( - PB)0al/W'

PA(1- PA)rl/ W'l
P(1 - PB)/[PB(1 - PB)]

and

IPA(1 - PA)/PA(1 - PA)] PA(1-p)2/W2
PB(1 PB)/W2 PB(1-PB)BPB)[ Ph)] |

so that the Jacobian of the evolutionary operator along the
full period is J12 = J1J2. Thus Sp(J12) = 2 + aloa[Ar(PA)r(Pi)
+ 1r(PA)'w(PB)]/(WiW2)2, where ir(u) = u(1 - u).

Clearly the inequality onaw <0 is the necessary condition for
the stability ofthe polymorphic fixed point-i.e., the epistatic
parameters must be of opposite signs. In all of the previous

FIG. 4. Fragment of system 2 trajectories in the space (PA, PB). (A and B) Different sets of fitnesses and initial points, as given in the text.

The total length of the portion shown in the graph is 50,OOOE in A and 30,OOOE in B. PA is expressed x 10-3.

[PA(wJA- w2) - PsdWjB/W l
(WflPA + WJ3(1- PA) - PdWjA)/Wj I
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FIG. 5. Formation of a 3-cycle from a stable polymorphic point
in system 1 caused by a very slight abrupt change in wv4 (from 0.43501
to 0.42901) for the selection regime S2 of Eq. 5. The time of the
change is indicated as bf. The graph shows the values ofPB at the end
of each full environmental period, E, where E = (Siel, Ne2, S2e3,
Ne2)l(Sle4, Nes, S2e6, Nes)"2, with el = 2, e2 = 4, e3 = 2, e4 = 7,
es = 10, and e6 = 7; nl = 17 and n2 = 12.

However, in this case the real part of the eigenvalues will be
very close to unity. Therefore, the oscillations, if they exist,
will damp very slowly. In the example considered in this
section (Fig. 4A), we have oe = -0.80, 02 = 0.019, Sp(J12) =
1.9999688, det(J1) = 0.6648690, det(J2) = 1.5040154, and
Sp(Jn)2 - 4 det(J1)det(J2) = -0.0000183 < 0.

Therefore, the analysis of the limiting system 2 has shed
some light on the long-term damping oscillations caused by
short-term cyclical fluctuations of selection coefficients.
Model 2. An increase in the complexity of the environ-

mental changes can lead to new effects. Consider system 1
with this periodic environment: E = (Siei, Ne2, S2e3,
Ne2,Y(S1e4, Ne5, S2e6, Nes)n2, where nl and n2 are the number
of successive reiterations of elementary periods, each be-
longing to the class considered above (model 1, steps i and ii).
The fitness coefficients are as follows.

A

0.1.

X 0.5

60,000
Generations, no.

180,000 300,000

For S1, we = 1, w,2 = 0.5, we = 0.6, and wi4 = 0.22

(i= 1,. . . el).

For S2, we1 = 0.1, w,2 = 0.2, we3 = 0.1616, and w4 = 0.43501

(i=el+e2+1,. . .,el+e2+e3). [i1

Note again that wvjwzj 0.1. Let r = 0.5, el = 2, e2 = 4, e3
= 2, e4 = 7, es = 10, and e6 = 7. For the particular case of
ni = 17 and n2 = 12 and the initial point xi = 0.015249, x2 =
0.002033, X3 = 0.677736, and x4 = 0.304981, the simple graph
shown before the time bf in Fig. 5 is obtained. This part
corresponds to stable forced oscillations with a period equal
to the full environmental period. It can be considered as a
stable polymorphic fixed point, ifwe study the behavior ofPA
and PB between consecutive periods. (In Figs. 5 and 6, the
graph shows PB at the last generation of each period.) What
happens if the selection coefficients are suddenly chang?
The part ofthe graph starting at time bfshows the apperance
of a stable T-cycle (T = 3). This strikingly different pattern
follows from a seeningingly trivial change in S2, wM =
0.43501 -w;4 = 0.42901.
Now consider again system 5 with coefficients correspond-

ing to those of Fig. 5, with the exception that w4 = 0.433120
in S2. The initial point is xi = 0.000216, x2 = 0.000481, X3 =
0.309366, and X4 = 0.689937. We now show a series of
transformations of the system behavior caused by stepwise
changes of wj4 in S2. Fig. 6 shows the following conversions:
(i) from the initial 4-cycle to a 12-cycle, due to a change in w;.
from 0.433120 to 0.432220; (ii) from the 12-cycle to chaotic-
like behavior, due to change in w,4 from 0.432220 to 0.431320;
(iii) from chaotic-like behavior to a 3-cycle, due to change in
wj4 from 0.431320 to 0.430420. Fig. 6D shows a fragment of
the 12-cycle iin more detail.
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FiG. 6. Series of transformations of the behavior of system 1 caused by a chain of abrupt changes in wj4 for the selection regime 52 of Eq.
S. The period structure is given in Fig. 5. The times of change are indicated by arrows at bfl, bt2, and bt3. (A) Transformation ofa 4-cycle into
a 12-cycle. (B) Transformation of the 12-cycle into chaotic-type behavior. (C) Transformation of chaotic-like behavior into a 3-cycle. (D) A
detailed frment ofthe 12-cycle, in which the consecutive points are connected by straight lines. Note that the mode ofany next regime depends
significantly on the phase of the previous cycle at which the change of the fitness coefficient occurred.
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Especially interesting is the chaotic-like behavior. We
tested whether or not small variations in the initial point of
this behavior will result in close trajectories. This is not the
case; a change of 10-6 in any of the coordinates of the initial
points has produced, after 1000 full environmental periods, a
divergence in all decimal places. This is characteristic of
chaotic behavior (e.g., ref. 11). In all other regimes, no such
instability of the trajectories was observed.

DISCUSSION
Despite the relatively simple structure of these haploid se-
lection models, they manifest diverse cyclical modes of
behavior. The lage period length of these oscillations in-
duced by short-period changes in the environment was quite
unexpected. This seems analogous to effects found for sys-
tems with diploid selection in a constant environment (1-3).
But in our case the period length described for model 1
approaches thousands of generations when the period of
environmental change is 6-10 generations. In our second
model, the transformation in the neutral portion of the period
produces linkage equilibrium. This corresponds to an infinite
number of generations without selection. This can be con-
sidered as a limiting case of situations with very long periods
of neutral behavior alternating with short periods of strong
selection (7).
Damping oscillations in the first model were found to be

rather robust with respect to variation in selection coeffi-
cients. Moreover, stochastic variation of these coefficients
within a certain range produces oscillatory behavior, pre-
venting the convergence to a (polymorphic) fixed point. The
last fact suggests some speculations about the possible evo-
lutionary significance of this mode of population behavior.
The same genetic structure imposed on different patterns

ofenvironmental change can produce quite different kinds of
limiting cyclical behavior. Thus, in the samples of model 2,
environments with relatively long periods generate short T-
cycles with lengths of 3-12 and chaotic-like behavior. Ear-
lier, in genetic systems with constant selection regimes only
very long cycles were observed (1-3), and Hastings (3) asked
whether short cycles are possible in such systems. Akin
(quoted in ref. 10) found an example of such a behavior, a
cycle with a length of 2, but with a recombination rate
exceeding 0.75, which is biologically unrealistic. It can be
shown numerically that Akin's evolutionary operator, ap-
plied to a changing environment (for example, with two states
and a period length of20-30 generations), produced T-cycles
with a length of 2. By an appropriate choice of selection

coefficients, this mode of behavior can be obtained with
recombination rates arbitrarily close to 0.5, although exceed-
ing this value. It is worth mentioning here that the metrical
theory of recombination and some experimental evidence
indicate that small excesses beyond 0.5 are possible (12).
One can ask how effective the proposed mechanism of

long-period fluctuations caused by short-period changes of
conditions is. At least partially, the answer to this question
depends on possible candidates for the initial short-period
fluctuations. In this connection, we can think about seasonal
environmental changes, 11-year sun activity cycles, and
such. According to the proposed mechanism, these cycles
could in principle produce oscillations of any length for
organisms, thus providing an environmenta basis for the
evolution ofhigher organisms, for example, plankton or coral
reef organisms affecting higher forms such as vertebrates.
These latter forms can produce new cycles, and so on. This
mechanism differs from oscillations caused by coevolution of
antagonistic species, such as host-parasite or predator-prey
relationships, because it does not involve any kind of mutual
effects.
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